Cetearyl Isononanoate
Phân loại:
Thành phần khác
Mô tả:
Cetearyl Isononanoate là gì?

Cetearyl Isononanoate là một chất lỏng không màu, trong suốt hoặc màu vàng nhạt, không mùi có nguồn gốc từ dầu quả cọ hoặc dầu dừa thường được dùng như một chất làm mềm trong sản phẩm.
Thành phần này hòa tan trong đietyl ete và acetyl và hòa tan nhẹ trong metanol và n-octanol. Tuy nhiên, Cetearyl Isononanoate không hòa tan trong nước nóng và lạnh. Phạm vi điểm nóng chảy của Cetearyl Isononanoate là 48 độ C đến 56 độ C.
Chất này có độ nhớt trung bình với đặc tính kỵ nước mạnh (không thấm nước).
Cũng như các este được dùng trong sản phẩm chăm sóc cá nhân khác, Cetearyl Isononanoate hoạt động hiệu quả như một chất phụ gia mỹ phẩm trong các sản phẩm làm mềm và mịn da khô.
Cùng với Ethylhexyl isononanoate và Isononyl isononanoate, Cetearyl isononanoate là một trong những este của Isononanoic Acid được sử dụng thường xuyên nhất trong các sản phẩm mỹ phẩm.
Điều chế sản xuất
Cetearyl isononanoate xuất hiện tự nhiên trong dầu cacao và dầu hoa oải hương cùng với nhiều loại dầu thực vật khác.
Chất này là một este của Pelargonic Acid hay còn gọi là Isononanoic Acid. Pelargonic Acid là một axit béo có 9 nguyên tử cacbon.
Cơ chế hoạt động
Cetearyl Isononanoate là một chất hòa tan tốt cho các thành phần sản phẩm chăm sóc cá nhân và mỹ phẩm. Chất này đặc biệt tương thích với da tạo thành một lớp màng chống thấm nước trên bề mặt da và do đó bảo vệ da chống lại sự mất nước của biểu bì.
Dược động học:
Dược lực học:
Xem thêm
Sepimax zen là gì?
Sepimax zen là một polyme liên kết có khả năng chống chất điện giải tuyệt vời. Sepimax zen có dạng bột làm dày, ổn định và tạo kết cấu. Nó có thể tạo ra gel nước trong suốt với cảm giác phong phú và thanh lịch mang đến cảm giác mượt mà như nhung. Sepimax zen là polymer hoàn hảo để xây dựng “khung” của các công thức và giải quyết thách thức của các thành phần hoạt tính gây căng thẳng và khó khăn. Nó tạo thành gel trong suốt với cảm giác mượt mà, phong phú và thanh lịch. Nó rất linh hoạt và có thể được sử dụng trong cả các sản phẩm vệ sinh và chăm sóc da, cũng như được sử dụng để tạo công thức nước rửa tay. Không quan tâm bởi vi nhựa.
Đặc tính của Sepimax zen: Dạng sử dụng là bột đã được trung hòa trước, Khả năng chống chất điện giải cao. Phạm vi PH cao từ 2 đến 8. Nó có độ bền cực cao với chất điện phân lên đến 10%, nó tạo thành gel trong nước. Sepimax zen có thể tương thích với ethanol và các dung môi khác, chất hoạt động bề mặt, AHA, axit salicylic, kẽm pyrithione, bộ lọc nắng và kem chống nắng, sắc tố, v.v.
Kết cấu của Sepimax zen
Điều chế sản xuất Sepimax zen
Được sản xuất bằng cách sử dụng một cải tiến đột phá được cấp bằng sáng chế bởi SEPPIC. Polymer ở dạng nhũ tương bán bền W/O đã được tiền trung hòa nên quy trình sản xuất đơn giản, đối với polymer dạng lỏng có thể cho vào hệ ở bất cứ thời điểm nào trong quá trình sản xuất (trước, trong, sau quá trình nhũ hóa).
Cơ chế hoạt động
Nó được thiết kế để xử lý tới 10% muối trong gel nước và không yêu cầu trung hòa. Nó hoạt động hiệp đồng với rượu béo để tăng độ nhớt đáng kể trong nhũ tương.
Bisabolol là gì?
Bisabolol (hay alpha-bisabolol) là loại cồn sesquiterpene đơn vòng không bão hòa tự nhiên. Bisabolol tồn tại dưới dạng dầu lỏng sánh, không màu, là thành phần chính của tinh dầu hoa cúc Đức (Matricaria recutita) và Myoporum crassifolium. Ngoài Bisabolol chiết xuất tự nhiên từ thực vật, các nhà khoa học còn sản xuất tổng hợp thành phần này nhưng so với dạng tự nhiên thì Bisabolol tổng hợp chỉ hoạt động ở mức độ khoảng 50%.

Từ rất lâu, Bisabolol đã trở thành nguồn nguyên liệu mỹ phẩm quý giá vì khả năng đặc biệt của nó. Bisabolol được các nhà sản xuất mỹ phẩm chăm sóc da đưa vào công thức rất nhiều loại mỹ phẩm khác nhau. Các sản phẩm chứa thành phần Bisabolol thường hướng đến công dụng trị mụn đỏ hoặc trong các loại kem trị mụn. Các nhà sản xuất còn kết hợp hoạt chất Bisabolol từ tinh dầu hoa cúc cùng một số nguyên liệu khác để giúp chống viêm cho da, giúp ngăn ngừa nguy cơ gây dị ứng, đặc biệt là với các loại da nhạy cảm nhất.
Điều chế sản xuất
Bisabolol hiện diện tự nhiên trong hoa cúc Đức (Matricaria chamomilla hoặc Matricaria recutita) cũng như vỏ của một cây New Caledonian (Myoporum crassifolium) hoặc cây Candeia (Vanillosmopsis erythropappa) của Brazil. Chiết xuất từ các nguồn thực vật này chính là hợp chất hữu ích cho các vấn đề về da.
Về sau, các nhà sản xuất bắt đầu chế tạo trong phòng thí nghiệm một thành phần giống với dạng chiết xuất tự nhiên. Mục đích của việc này là nhằm ngăn chặn tối đa nạn phá rừng nhiệt đới ở Brazil để thu Bisabolol dạng tự nhiên.
Cơ chế hoạt động
Bản thân hoạt chất Bisabolol được hấp thu tốt, đồng thời còn tạo điều kiện cho các thành phần khác trong sản phẩm cũng được hấp thụ hiệu quả nhất.

Dùng Bisabolol cho những làn da bị tổn thương do điều trị bằng laser, thành phần này sẽ thúc đẩy tăng hydrat hóa làn da, các lipid bề mặt, độ đàn hồi da cũng như giúp giảm tình trạng mất nước cho da, từ đó tăng tính toàn vẹn của lớp rào chắn bảo vệ da.
Các nhà khoa học đánh giá, Bisabolol có tác dụng chống viêm so sánh với các hợp chất corticosteroid (nhưng nổi bật hơn corticosteroid là không gây tác dụng phụ). Vì thế, Bisabolol thường là phương án được ưu tiên hơn so với việc sử dụng các corticosteroid như hydrocortisone hoặc dexamethasone.
Carotenoid là gì?
Một hợp chất hóa học tự nhiên Carotenoid được tìm thấy hầu hết trong các sắc tố thực vật, những thực vật có màu sắc mà chúng ta ăn hàng ngày. Thực vật, và một số loại carotenoid cung cấp màu cam, đỏ hoặc vàng khi chúng ta ăn chúng có lợi cho sức khỏe.
Một số thực phẩm từ động vật cũng chứa carotenoid, chẳng hạn như nhuyễn thể, động vật giáp xác và cá. Bản thân động vật biển này không sản sinh ra được carotenoid, nhưng chúng ăn nhiều thực vật có chứa tảo hoặc chúng ăn các sinh vật biển khác đã ăn nhiều carotenoid nên tổn hợp được carotenoid. Lòng đỏ trứng cũng chứa một lượng đáng kể carotenoid, đặc biệt là khi gà mái được cho ăn thức ăn giàu carotenoid.

Carotenoid được biết đến nhiều nhất là beta-carotene , nguồn cung cấp vitamin A chính từ thực vật. Một số carotenoid đã được phát hiện là có lợi cho sức khỏe được liệt kê ở đây cryptoxanthin, alpha-carotene và astaxanthin lycopene, lutein, zeaxanthin. Chúng chỉ tình cờ được tìm thấy trong các loại thực phẩm rất bổ dưỡng và nó đều hoạt động như chất chống oxy hóa
Một số nghiên cứu chỉ ra rằng carotenoid được biết đến là một dạng sắc tố hữu cơ được tìm thấy những loài sinh vật có thể quang hợp và trong thực vật. Như tảo, một số nấm và một vài loại vi khuẩn chẳng hạn. Nó là tên của một nhóm những hợp chất có công thức cấu tạo gần giống nhau và có tác dụng trong việc bảo vệ cơ thể cũng gần như nhau chứ không phải một tên gọi riêng.
Khoảng 600 loại carotenoid khác nhau đã được các nhà khoa học phát hiện ra. Chúng được phân vào hai nhóm chính là carotenoid và xanthophylis tùy theo cấu tạo.
Con người không thể tự tổng hợp ra carotenoid mà chỉ có thể sử dụng carotenoid từ việc ăn thực vật để cung cấp các nhóm chất cần thiết trong quá trình phát triển và bảo vệ cơ thể con người.
Tác dụng của carotenoid chống lại những tác nhân oxy hóa từ bên ngoài tới cơ thể. Có tới khoảng 600 nhóm carotenoid khác nhau đã được thống kê, và trong số này thì có tới 50 nhóm được tìm thấy ở thực phẩm. Trong máu của chúng ta chỉ có khoảng 15 loại. Để giúp sự ổn định sức khỏe của con người, 15 loại này góp phần quan trọng.
Điều chế sản xuất
Điều tra, nghiên cứu, chiết xuất và tinh chế một số thực vật phổ biến ở Việt Nam chứa các carotenoid, đồng thời nghiên cứu một số đặc tính sinh học của chúng lên cơ thể sinh vật, chuột. Thăm dò khả năng ứng dụng của các hợp chất trên vào sản xuất thuốc và thực phẩm thuốc phục vụ đời sống. Thu thập các thực vật chứa các carotenoid, tách chiết chất carotenoid bằng các hệ dung môi, tinh sạch carotenoid bằng sắc ký bản mỏng điều chế, sắc ký cột trên gel silicagel.
Nghiên cứu một số tính chất hóa lý và hoạt tính sinh học của các carotenoid như khả năng chống oxy hóa, kháng khuẩn. Khi thử hoạt tính của ba chế phẩm β-caroten, lycopen, lutein kết quả thu được lên hai enzyme catalase, peroxidase. Ở một thử nghiệm khác, tác dụng của ba chế phẩm β-caroten, lycopen, lutein thu được lên khả năng sinh trưởng của 12 loài vi sinh vật và chuột khi cho chúng uống cùng CCl4.
Tách chiết được β-caroten từ rau dệu bằng dung môi ete-dầu, tinh sạch bởi sắc ký lọc gel silicagel, lycopen từ cà chua bằng hệ dung môi n-hexan: axeton (6:4) và tinh sạch bằng sắc ký lọc gel silicagel, lutein từ cánh hoa cúc vạn thọ bằng hệ dung môi ete dầu, tinh sạch bằng sắc ký lọc gel silicagel. Đã khảo sát được thành phần β-carotenoid, lycopen, lutein từ 31 mẫu thực vật ở Việt Nam. Ở một số mẫu chứa nhiều lá rau sam, rau má… còn 1 nguồn nguyên liệu phổ biến là rau rệu mới được phát hiện thêm. Trong quả cà chua chín nhũn là nguồn cung cấp phong phú lycopen nhất. Trong các mẫu nghiên cứu hầu như đều có lutein với hàm lượng tương đối cao tuy nhiên cánh hoa cúc vạn thọ là mẫu có nhiều nhất.
Cơ chế hoạt động
Alpha-carotene, beta-carotene và beta-cryptoxanthin là những thành phần chuyển đổi được thành vitamin A trong cơ thể và tất cả đều được gọi là carotenoids, phần còn lại của carotenoids được liệt kê không thể được chuyển đổi thành vitamin A. Một tên gọi khác được gọi là carotenoids không chứa vitamin A. Đối với cơ thể chúng ta, hoạt chất beta-carotene là nguồn cung cấp vitamin A chính.
Benzophenone là gì?
Benzophenone là một hợp chất hữu cơ có công thức (C6H5)2CO, thường được viết tắt là Ph2CO. Chất này không hòa tan trong nước nhưng hòa tan trong dung môi hữu cơ như rượu, Axeton, Ether, Acid acetic, Chloroform và Benzen… Benzophenone và các dẫn xuất của nó như Benzophenone-1, -3, -4, -5, -9 và -11 thường được sử dụng trong mỹ phẩm và các sản phẩm chăm sóc cá nhân.

Benzophenone được sử dụng trong các sản phẩm chăm sóc cá nhân như son dưỡng môi và sơn móng tay để bảo vệ sản phẩm khỏi tia UV. Các dẫn xuất của Benzophenone, chẳng hạn như Benzophenone-2 và (hay còn gọi là Oxybenzone) là những thành phần phổ biến trong kem chống nắng.
Dẫn xuất Benzophenone-4 là chất chống nắng hóa học có khả năng hấp thụ tia UVB thứ cấp và hấp thụ một khoảng ngắn trong phạm vi tia UVA. Benzophenone-4 được gọi là một chất hấp thụ tia UV thứ cấp vì đây là một chất chống nắng không đủ mạnh khi sử dụng đơn độc nên thường được kết hợp với các thành phần chống nắng khác. Do vậy thành phần này được sử dụng phổ biến hơn như một chất bảo vệ quang để tăng thời hạn sử dụng của sản phẩm hoặc như một chất bảo vệ màu sắc cho các sản phẩm sử dụng bao bì trong suốt.
Trong các sản phẩm chăm sóc cá nhân, Benzophenone được sử dụng như một chất tăng cường hương thơm hoặc để ngăn các sản phẩm như xà phòng mất mùi hương và màu sắc khi tiếp xúc với tia UV. Benzophenone-3 được sử dụng như một chất ổn định và hấp thụ tia UV, đặc biệt là trong chất dẻo và chất chống nắng.
Tuy nhiên, chất này được khuyến cáo là gây ung thư cùng với một số tác hại khác cho sức khỏe con người. Các nhà sản xuất mỹ phẩm ở Mỹ đã hạn chế dùng Benzophenone, benzophenone-2, benzophenone-3, benzophenone-4, và benzophenone-5 trong các sản phẩm của họ.
Điều chế sản xuất
Có thể thu được 66% hiệu suất Benzophenone bằng cách Friedel-Crafts acyl hóa Benzoyl clorua với một lượng dư Benzen và nhôm Clorua khan. Benzophenone cũng được sản xuất bằng cách Oxy hóa Diphenylmethane trong khí quyển với chất xúc tác kim loại, chẳng hạn như đồng Naphthenate.
Cơ chế hoạt động
Một lớp phủ bề mặt của chất Benzophenone có thể làm giảm lượng bức xạ UV được hấp thụ vào da bằng cách giới hạn tổng lượng năng lượng đến da. Chẳng hạn, kem chống nắng Benzophenone được bôi tại chỗ, bảo vệ da khỏi những tác hại của tia UV bằng cách hấp thụ hóa học năng lượng ánh sáng. Độ hấp thụ UV tối đa của Benzophenones nằm trong khoảng từ 284 đến 287nm.
Caprylyl Glycol là gì?
Caprylyl glycol hay còn gọi là 1,2-octanediol, là một loại rượu có nguồn gốc từ Acid caprylic, một loại Acid béo bão hòa, phân tử có tám nguyên tử Cacbon. Acid caprylic là một chất lỏng không màu, mùi nhẹ, có trong sữa của một số động vật có vú cũng như trong dầu cọ và dầu dừa, có đặc tính kháng khuẩn và chống viêm.
Caprylyl glycol có trọng lượng phân tử thấp với hai nhóm hydroxyl trên mỗi phân tử.
Các tên hóa học khác của Caprylyl glycol gồm 1,2-di-hydroxyoctan; 1,2-octanediol và 1,2-octylen glycol.
Caprylyl glycol là một chất tăng cường bảo quản, có thể thay thế các chất bảo quản truyền thống như Paraben hoặc chất khử Formaldehyde. Đồng thời, chất này cũng giúp tăng hiệu quả hoạt động, tăng hoạt tính kháng khuẩn của các chất bảo quản khác trong công thức sản phẩm. Do đó, Caprylyl glycol hoạt động như một chất ổn định nhằm kéo dài thời hạn sử dụng sản phẩm và giúp ngăn ngừa các thành phần khác bị hư hỏng.
Caprylyl glycol còn được sử dụng như một chất giữ ẩm và dưỡng chất trong các sản phẩm chăm sóc cá nhân, chủ yếu là sản phẩm bôi ngoài da, đồng thời sửa đổi độ nhớt của sản phẩm.

Điều chế sản xuất
Trong công nghiệp, Caprylyl glycol được sản xuất tổng hợp, thường bắt đầu bằng việc tổng hợp Ethylene glycol hay còn gọi đơn giản là 1,2-glycols. Đây là quá trình oxy hóa nhiệt của Ethylene oxide với nước. Việc sản xuất Ethylene oxide tổng hợp bao gồm cả Caprylyl glycol và thường được thực hiện thông qua quá trình oxy hóa xúc tác của oxit kiềm tương ứng hoặc khử axit 2-hydroxy tương ứng.
Cơ chế hoạt động
Cấu trúc của Caprylyl glycol mang đến lợi ích kháng khuẩn, giúp tăng hiệu quả bảo quản khi kết hợp với nhiều loại chất bảo quản khác.
Caprylyl glycol có thể hoạt động như một chất bảo quản chống lại vi khuẩn trong các công thức dầu và nước. Tuy nhiên, chất này có hiệu quả hạn chế đối với nấm. Do đó, để bảo vệ kháng khuẩn phổ rộng, Caprylyl glycol thường được sử dụng cùng với các chất bảo quản khác trong hệ thống. Caprylyl glycol thường kết hợp với Phenoxyethanol và Chloroxylenol, hai chất bảo quản đáp ứng được quy định toàn cầu hiện nay.
Sự kết hợp giữa Phenoxyethanol và Caprylyl Glycol tạo nên hỗn hợp gọi là Optiphen, giúp sản phẩm chống lại sự phát triển của các vi sinh vật.
Với cách kết hợp này, hiệu quả kháng khuẩn được nâng cao và khả năng hòa tan của một số chất bảo quản truyền thống được nâng cao chẳng hạn như Paraben và Phenoxyethanol.
Cera Microcristallina là gì?

Cera Microcristallina có tên hóa học là Hydrocarbon Waxes, Microcryst, Petroleum Wax, Microcrystalline wax (sáp tinh thể). Thành phần này có màu từ trắng đến màu nâu tùy thuộc vào mức độ tinh chế, đục, không mùi, dễ uốn; không hòa tan trong nước, hòa tan trong rượu ấm, dầu và sáp tan chảy khác.
Đây là một hỗn hợp tinh chế của các Hydrocacbon béo bão hòa, rắn, có khối lượng phân tử cao và có nguồn gốc từ dầu mỏ. So với sáp Paraffin, Cera Microcristallina sẫm màu hơn, nhớt, đặc, dính và đàn hồi hơn, đồng thời có trọng lượng phân tử và điểm nóng chảy cao hơn.
Cera Microcristallina là một loại sáp được sử dụng trong sản phẩm chăm sóc da và mỹ phẩm để làm đặc và cải thiện kết cấu cũng như tính nhất quán của công thức.
Sáp Cera Microcristallina khác với sáp Parafin tinh chế ở chỗ cấu trúc phân tử phân nhánh nhiều hơn và chuỗi Hydrocacbon dài hơn (trọng lượng phân tử cao hơn). Cera Microcristallina dai, linh hoạt và có nhiệt độ nóng chảy cao hơn sáp Parafin nên loại sáp này thường được thay thế Parafin.
Sáp Parafin có nhiệt độ nóng chảy thấp hơn nhưng chất lượng cháy tốt hơn, đó là lý do tại sao vật liệu này được chọn dùng để làm nến hơn Cera Microcristallina. Trong khi sáp vi tinh thể có xu hướng dày và dai hơn nhưng có độ mềm dẻo và đàn hồi tốt hơn. Những loại sáp này cũng hoạt động tốt hơn như một chất chống ẩm.
Cera Microcristallina được sử dụng phổ biến trong son môi, giúp son giữ nguyên được hình dạng. Vì sáp vi tinh thể chứa một lượng dầu cao nên nó cũng có thể giữ cho son kem không bị đổ mồ hôi.
Sáp là một chất làm mềm tự nhiên, giúp cho da dẻo dai và mềm mại. Khi thoa lên da, nó sẽ bổ sung độ ẩm và tiếp tục tăng cường độ ẩm cho da sau khi điều trị xong. Nó cũng có thể giúp mở lỗ chân lông và loại bỏ các tế bào da chết.
Tuy nhiên, nếu bạn đang tìm kiếm các sản phẩm sáp thân thiện với môi trường, tốt nhất nên tránh bất kỳ sản phẩm nào có chứa Paraffin hoặc Cera Microcristallina vì những sản phẩm này không thân thiện với môi trường. Thay vào đó, hãy tìm các sản phẩm có nguồn sáp từ động vật hoặc thực vật (có ghi thông tin trên nhãn sản phẩm), tùy thuộc vào việc bạn có thích sản phẩm thuần chay hay không.
Điều chế sản xuất
Cera Microcristallina là một loại sáp được sản xuất bằng cách khử dầu hỏa, như một phần của quá trình tinh chế dầu mỏ, nghĩa là loại bỏ dầu để giữ lại sáp.
Cơ chế hoạt động
Cera Microcristallina không nhũ hóa dễ dàng nhưng có thể được biến tính với chất xúc tác để tạo ra dạng oxy hóa, có thể nhũ hóa được sử dụng trong loại sáp sàn cứng, tự đánh bóng. Sáp vi tinh thể được sử dụng trong giấy cán và giấy bạc cũng như để đánh bóng. Nó đánh bóng thành thủy tinh trong suốt, mịn, không dính.
Marigold là gì?
Cúc vạn thọ là loại cây thảo mọc đứng, cao 0,6-1m, phân nhánh thành bụi có cành nằm trải ra. Lá cúc vạn thọ xẻ sâu hình lông chim, các thuỳ hẹp, dài, nhọn, khía răng cưa. Đầu hoa toả tròn, rộng 3 - 4cm hay hơn, mọc đơn độc hay tụ họp thành ngù; lá bắc của bao chung hàn liền với nhau; hoa màu vàng hay vàng cam, màu lông gồm 6 - 7 vẩy rời nhau hoặc hàn liền nhau. Hoa ở phía ngoài hình lưỡi nhỏ xoè ra, hoa ở phía trong hình ống và nhỏ.
Quả bế có 1 - 2 vẩy ngắn., cây ra hoa vào mùa đông cho tới mùa hạ. Calendula officinalis (Cúc vạn thọ) thuộc họ thực vật có tên Asteraceae hay Compositae. Những cánh hoa nhỏ được thu hoạch và làm khô vì nhiều tính chất dùng để làm thuốc. Mặc dù có rất nhiều loài hoa cúc vàng (marigold flowers) được trồng trên khắp thế giới, nhưng Calendula (cúc vạn thọ) được dùng để làm thuốc nhiều nhất. Nó có nguồn gốc ở Ai Cập và một phần của Địa Trung Hải nhưng bây giờ đã phát triển ở mọi châu lục, thường nở trong những tháng nóng của năm (từ tháng 5 đến tháng 10 ở Bắc bán cầu).

Một số nghiên cứu chỉ ra rằng tinh chất hoa cúc vàng (marigold flowers extract) chứa nhiều thành phần hoạt tính, bao gồm các chất chống oxy hoá và dầu dễ bay hơi. Cúc vạn thọ chứa chất chống oxy hóa dưới dạng flavonoid và carotenoids. Ở cánh hoa có nhiều chất chống oxy hóa và các axit béo như axit calendric và axit linoleic. Ở lá của cúc vạn thọ chứa lutein và beta-carotene, có chức năng chống oxy hóa mạnh mẽ.
Điều chế sản xuất
Một số nghiên cứu đã phát triển nhũ tương dầu/nước, sử dụng dầu Cúc vạn thọ (Calendula officinalis L) và rượu béo etoxyl hóa làm chất hoạt động bề mặt. Giá trị HLB cần thiết cho dầu cúc vạn thọ được xác định là 6,0. Các chất hoạt động bề mặt được liên kết trong các cặp ưa béo/ưa nước. Các chất hoạt động bề mặt ưa béo là Ceteth ‐ 2 và Steareth ‐ 2 và các chất hoạt động bề mặt ưa nước là Steareth ‐ 20, Ceteareth ‐ 20, Ceteareth ‐ 5 và Ceteth ‐ 10. Để xác định các pha tinh thể lỏng, các nhũ tương được phân tích bằng kính hiển vi ánh sáng phân cực. Độ ổn định vật lý được đánh giá bằng phương pháp lưu biến và phân tích tiềm năng zeta. Tất cả các nhũ tương đều có cấu trúc tinh thể lỏng dạng phiến. Kết quả cho thấy loại chất hoạt động bề mặt này có thể tạo ra tinh thể lỏng trong hệ thống, với sự khác biệt nhỏ về bề ngoài, ảnh hưởng đến độ ổn định vật lý, theo các phương pháp đã áp dụng.
Việc phân lập được thực hiện bằng cách chiết xuất dung môi tuần tự của T. patula những bông hoa. Một mẫu gồm 600g nguyên liệu thực vật đã được nghiền thành bột khô được chiết bằng 1,2-dichloroethane trong thiết bị Soxhlet trong 48 giờ cho đến khi mất màu. Phần còn lại sau quá trình chiết tách dichloroethane được tái chiết xuất bằng etanol (tỷ lệ dung môi/chất thực vật 1: 5) để phân lập các hợp chất có độ phân cực cao hơn.
Các dung môi được làm bay hơi trong chân không ở 40°C để tạo ra chất chiết thô dicloroetan và etanol. Tiếp tục tách các hợp chất riêng lẻ khỏi dịch chiết dicloetan được thực hiện bằng sắc ký cột trên cột silica gel với hệ dung môi cloroform-hexan. Quá trình rửa giải các phân đoạn từ cột được bắt đầu bằng hexan với sự gia tăng thêm hàm lượng cloroform trong hệ thống. Sự rửa giải với 3% cloroform trong hexan cho hợp chất 1. Hợp chất 2 có trong phần được rửa giải từ cột với 5% cloroform trong hexan.
Dịch chiết etanol được tách trên cột silica gel bằng cách rửa giải với dicloroetan/metanol bằng phương pháp sắc ký lớp mỏng (TLC) để xác định đặc điểm sơ bộ của các phân đoạn. Quá trình rửa giải được bắt đầu với dichloroethane với sự gia tăng từng bước sau đó của hàm lượng metanol trong hệ thống.
Rửa giải với metanol 2, 3, 5, 7 và 10% trong dicloroetan tạo ra các phần tương ứng là 1, 2, 3, 4 và 5. Sắc ký lại của phân đoạn 2 trên cột Sephadex LH-20 với metanol 2% trong cloroform với sự tách TLC tiếp tục tạo ra hợp chất 2 cũng được tìm thấy trong dịch chiết dicloetan. Hợp chất 3 thu được bằng cách sắc ký lại phân đoạn 5 trên cột silica gel được rửa giải bằng metanol 8% trong cloroform và tiếp tục được tinh chế trên cột polyamit bằng cách rửa giải bằng etanol trong nước.
Quá trình phân tách TLC được thực hiện bằng các tấm silica gel Merck (Đức). Tách các hợp chất ưa béo được thực hiện trong hệ dung môi của dichloroethane-methanol (9: 1) và chloroform-methanol (9: 1). Các hợp chất phân cực hơn từ chiết xuất etanol được tách ra trong hệ dung môi của cloroform/metanol/nước (26: 14: 3).
Các sắc ký đồ được kiểm tra dưới ánh sáng UV ở bước sóng 254 và 360 nm, trước và sau khi sử dụng thuốc thử nhuộm để phát hiện flavonoid. Các flavonoid được phát hiện dưới dạng các đốm vàng lộ ra sau khi nung nóng các tấm được phun bằng dung dịch nhôm clorua etanol 1%. Các hợp chất khác được phát hiện bằng cách phun các dung dịch axit sunfuric 20%. Sau khi nung nóng các tấm phun đến 100°C, các hợp chất được tiết lộ dưới dạng các đốm có sắc thái từ xanh lam đến xanh lục, tùy thuộc vào các hợp chất cụ thể.
Cơ chế hoạt động
Cúc vạn thọ Pháp (Tagetes patula L.) được sử dụng rộng rãi trong y học dân gian, đặc biệt để điều trị các rối loạn liên quan đến viêm. Tuy nhiên, cơ chế tế bào của hoạt động này cần được nghiên cứu thêm. Trong một số nghiên cứu tiềm năng của các hợp chất T. patula để làm giảm bớt căng thẳng oxy hóa trong các tế bào T lymphoblastoid Jurkat ở người bị thách thức với hydrogen peroxide. Chiết xuất thô của hoa cúc vạn thọ và các phân đoạn tinh khiết có chứa flavonoid patuletin, quercetagetin và quercetin và các dẫn xuất của chúng, cũng như carotenoid lutein, được đưa tiếp xúc với các tế bào Jurkat được thử thách với 25 hoặc 50 μ M H 2 O 2.
Hydrogen peroxide gây ra stress oxy hóa trong tế bào, biểu hiện là tạo ra các gốc superoxide và peroxyl, giảm khả năng tồn tại, chu kỳ tế bào bị bắt và tăng cường quá trình chết rụng. Sự căng thẳng đã được giảm bớt nhờ các thành phần cúc vạn thọ thể hiện khả năng loại bỏ gốc rễ cao và tăng cường hoạt động của các enzym chống oxy hóa liên quan đến việc trung hòa các loại oxy phản ứng.
Phần flavonoid giàu quercetin và quercetagetin cho thấy hoạt tính bảo vệ tế bào cao nhất, trong khi patuletin ở liều cao có tác dụng gây độc tế bào liên quan đến khả năng chống ung thư của nó. T. patulacác hợp chất tăng cường sản xuất interleukin-10 (IL-10) chống viêm và chống oxy hóa trong tế bào Jurkat. Cả khả năng loại bỏ gốc rễ trực tiếp và kích thích các cơ chế bảo vệ tế bào có thể làm nền tảng cho các đặc tính chống viêm của hoa cúc vạn thọ.
Chiết xuất ethanol từ hoa Calendula officinalis L. thể hiện tác dụng chống viêm thông qua việc ức chế các cytokine gây viêm (IL-1β, IL-6, TNF-α và IFN-γ), và nó đã được đề xuất để ức chế COX-2 thông qua ức chế gen enzym và tổng hợp prostaglandin sau đó.
B-White là gì?
B-White là hợp chất bao gồm nhiều chất hóa học bao gồm: Purifiled water, niacinamide, glycerin, boron nitride, cetearyl alcohol, ceteareth-2, ceteareth 25, glycyrthlza glabra extract, butyrospermum parkii argania spinosa kenerol, persea gratissima oil, glycolic acid, polysorbate 80, allantoin, alpha arbutin...
B-White là một nguyên liệu mỹ phẩm giúp trắng da có khả năng ức chế quá trình tăng sinh hắc sắc tố melanin của tế bào. Từ đó những sản phẩm chứa B-White giúp cải thiện các vùng da bị đen sạm, sẫm màu, làn da kém sắc.
Trong hoạt chất trắng da B-White có chứa hai hoạt chất liên quan sự hình thành sắc tố là arbutin và albatin. Hai chất trên giúp ngăn chặn đồng thời điều chỉnh các hắc sắc tố ở tầng biểu bì của da nên làm sáng, đều màu các vùng da bị đen sạm, tối màu, và dưỡng trắng da.
Nguyên liệu mỹ phẩm, hoạt chất trắng da B-White có khả năng ức chế trung tâm hoạt động MITF - nơi điều khiển ezyme Tyrosinase sản sinh ra sắc tố tối màu melanin để từ đó ngăn chặn các tác nhân gây nám, tàn nhang và sạm da, da tối màu,…
Điều chế sản xuất B-White thế nào?
Nguyên liệu mỹ phẩm trắng B-White này có thể làm được điều nhờ vào công nghệ siêu thẩm thấu Ecogel. Ecogel là công nghệ đã đạt được chứng chỉ Ecocert với ưu điểm nổi bật là làm tăng khả năng thâm nhập và dẫn truyền các hoạt chất này vào sâu trong các tế bào da nhằm nâng cao mức độ hiệu quả của sản phẩm một cách ưu việt, nhanh chóng và rõ rệt.
Cơ chế hoạt động B-White ra sao?
Ta biết rằng sự thâm, sậm, tăng sức tố da liên quan đến một chất có tên gọi melanin hiện diện trên da. Quá trình hình thành chất này được miêu tả cụ thể như sau. Ban đầu enzyme Tyrosinase chuyển Tyrosin thành Melanin. Sự tổng hợp Melanin tạo ra sắc tố da. Và các hạt sắc tố được vận chuyển đến các tế bào sừng dọc theo các tua. Bên trong các tế bào sừng, Melanin lắng đọng thành các chắn bao quanh nhân của tế bào. Tại đây, Melanin được xem như là một chắn hấp thụ và phản chiếu tia UV. Do đó, DNA trong các tế bào da được bảo vệ dưới sự chống tia UV hiệu quả nhất. Từ đó ngăn chặn các tác nhân gây nám da, đen sạm da, da tối màu,…
Ức chế trung tâm hoạt động MITF: MITF được xem như yếu tố gốc rễ của nguyên nhân gây sạm da, đen da.
Ức chế Enzyme Tyrosinase dẫn đến việc giảm sự sinh ra của tế bào Melanosome hay còn gọi là tế bào biểu bì hắc tố.Kéo theo đó là sự giảm sản sinh ra sắc tố tối màu Melanin.

Adenine là gì?
Adenine là một nucleobase (một dẫn xuất purine). Nó là một trong bốn nucleobase trong axit nucleic của DNA được biểu thị bằng các chữ cái G – C – A – T. Ba chất khác là guanine, cytosine và thymine. Các dẫn xuất của nó có nhiều vai trò khác nhau trong sinh hóa bao gồm hô hấp tế bào, ở dạng cả adenosine triphosphate (ATP) giàu năng lượng và các đồng yếu tố nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) và Coenzyme A.
Adenine có công thức hóa học là C5H5N5 và cấu trúc là một vòng cacbon-nitơ kép. Nó là một purine, vì vậy nó được tạo thành từ một vòng năm cạnh và một vòng sáu cạnh, mỗi vòng chứa nitơ, được hợp nhất với nhau. Phân tử adenin có thể được phân biệt với các nhân purin khác bằng nhóm amin gắn với cacbon của chúng ở vị trí 6. Ngoài ra còn có một nhóm hydro gắn với nitơ ở vị trí 9.
Adenine có công thức hóa học là C5H5N5
Nó cũng có có chức năng tổng hợp protein và là thành phần hóa học của DNA và RNA. Hình dạng của adenine bổ sung cho thymine trong DNA hoặc uracil trong RNA.
Điều chế sản xuất
Sự chuyển hóa purine liên quan đến sự hình thành của adenine và guanine. Cả adenine và guanine đều có nguồn gốc từ nucleotide inosine monophosphate (IMP), lần lượt được tổng hợp từ một ribose phosphate có sẵn từ trước thông qua một con đường phức tạp sử dụng các nguyên tử từ axit amin glycine, glutamine và axit aspartic, cũng như coenzyme tetrahydrofolat.
Phương pháp sản xuất adenine ở quy mô công nghiệp được công nhận hiện nay là một dạng sửa đổi của phương pháp formamide. Phương pháp này làm nóng formamide trong điều kiện 120 độ C trong bình kín trong 5 giờ để tạo thành adenin. Phản ứng được tăng lên nhiều về số lượng bằng cách sử dụng phốtpho oxyclorua (photphoryl clorua) hoặc photpho pentachlorua làm chất xúc tác axit và điều kiện ánh sáng mặt trời hoặc tia cực tím.
Sau khi 5 giờ trôi qua và dung dịch formamide-phospho oxychloride-adenine nguội bớt, nước được đưa vào bình có chứa formamide và bây giờ là adenine đã tạo thành.
Cơ chế hoạt động
Adenine tạo thành adenosine, một nucleoside, khi gắn vào ribose, và deoxyadenosine khi gắn vào deoxyribose, và nó tạo thành adenosine triphosphate (ATP), thúc đẩy nhiều quá trình trao đổi chất tế bào bằng cách truyền năng lượng hóa học giữa các phản ứng.
Boron Nitride là gì?
Boron Nitride là hợp chất không quá xa lạ với phái đẹp bởi loại hợp chất tạo hiệu ứng chiếu sáng này là một thành phần được sử dụng rộng rãi trong ngành công nghiệp mỹ phẩm. Ở điều kiện thường, Boron Nitride ở dạng bột màu trắng giống như bột talc, có thể phản chiếu lấp lánh dưới đèn màu.
Boron Nitride ở dạng bột màu trắng giống như bột talc
Boron Nitride xuất hiện trong các loại sản phẩm như kem nền, phấn phủ, son môi,… nhờ khả năng cải thiện độ láng mịn cho làn da. Đặc điểm nổi trội của Boron Nitride là khả năng liên kết các phân tử nhỏ giúp tăng cường độ bám dính trên bề mặt của các loại mỹ phẩm, giữ cho son môi, phấn phủ, kem nền được giữ lâu hơn và mang lại cảm giác mịn màng, căng bóng cho làn da. Đối với son môi, Boron Nitride là thành phần “vàng” bởi chúng có thể giúp lớp son được phân tán đều trên bề mặt môi mà không tạo cảm giác nhờn, rít.
Boron Nitride - thành phần quen thuộc trong nhiều loại mỹ phẩm
Điều chế sản xuất Boron Nitride
Trong phòng thí nghiệm, Boron Nitride được điều chế từ phản ứng hóa học giữa Boron trioxit (B2O3) hoặc Axit boric (H3BO3) với Amoniac (NH3) hoặc Urê (CO (NH2) 2) trong môi trường Nitơ:
B2O3 + 2NH3 → 2BN + 3 H2O (T =900°C).
B(OH)3 + NH3 → BN + 3H2O (T =900°C).
B2O3 + CO(NH2)2 → 2BN + CO2 + 2H2O (T >1000°C).
B2O3 + 3CaB6 + 10N2 → 20BN + 3CaO (T >1500°C).
Cơ chế hoạt động của Boron Nitride
Boron Nitride tồn tại ở nhiều dạng khác nhau, tương tự như dạng cấu trúc của Carbon. Hợp chất này hoạt động như một chất khoáng trong mỹ phẩm cải thiện khả năng bám dính của mỹ phẩm trên da.
ATP là gì?
Mọi sinh vật sống trên trái Đất đều cần năng lượng để hoạt động cũng như thúc đẩy quá trình trao đổi chất trong cơ thể. ATP là viết tắt của cụm từ Adenosin Triphosphat, chính là nguồn cung cấp năng lượng sinh học chủ yếu này cho cơ thể sinh vật. Nói một cách khác, ATP là phân tử mang năng lượng, chúng có chức năng vận chuyển năng lượng đến nơi mà các tế bào cần sử dụng.
Không ít người lầm tưởng rằng chất dinh dưỡng từ thức ăn chính là năng lượng sống mà chúng ta sử dụng. Thực tế thì sau khi tiêu hóa thức ăn, cơ thể sẽ dự trữ các chất dinh dưỡng dưới dạng carbohydrates (tinh bột), fat (chất béo) hay protein (chất đạm). Các chất này lại được phân giải thành hợp chất đơn giản hơn đó là glucose, acid amin, acid béo và theo đường máu vận chuyển đến các tế bào.

Tuy nhiên, các tế bào không thể trực tiếp lấy năng lượng từ những chất dinh dưỡng này. Chính vì vậy, chúng ta cần có các hệ năng lượng giúp xử lý, biến đổi chúng thành ATP. Các ATP này sẽ dự trữ và cung cấp năng lượng có thể sử dụng được cho các tế bào khi cần. Quá trình này không chỉ ra trong tất cả các loại động vật, thực vật và vi khuẩn (và ngay cả trong virus khi chúng đang di chuyển trong các vật chủ)
Trong tự nhiên, ATP chỉ có thể được tìm thấy trong một số loại thảo dược quý giá “Đông trùng hạ thảo” hay linh chi.
Điều chế và sản xuất
Cấu tạo của một ATP cơ bản bao gồm:
Adenine: Một cấu trúc vòng bao gồm các nguyên tử C, H và N.
Ribose: Một phân tử đường có 5 Carbon.
Phần đuôi với 3 phân tử phosphat vô cơ (Pi). Liên kết giữa 2 Pi cuối cùng chứa rất nhiều năng lượng. Do đó việc phân tách các phần này chính là mấu chốt của quá trình giải phóng năng lượng của ATP.
ATP có thể được tạo ra từ đường đơn và đường phức tạp cũng như từ lipid thông qua phản ứng oxy hóa khử. Để điều này xảy ra, trước tiên carbohydrate phải được phân hủy thành đường đơn, trong khi chất béo phải được chia thành axit béo và glycerol. Tuy nhiên, quá trình sản xuất ATP được điều chỉnh rất cao. Sản xuất của nó được kiểm soát thông qua nồng độ cơ chất, cơ chế phản hồi và cản trở dị ứng.
Cơ chế hoạt động của ATP
Trong môi trường ống nghiệm, khi một phân tử glucose phân tách thành CO2 và nước đồng thời sẽ giải phóng khoảng 686 kcal/mol. Năng lượng này được tỏa ra dưới dạng nhiệt năng và phải sử dụng máy hơi nước thì mới có thể chuyển thành công cơ học. Hiển nhiên điều này là không thể xảy ra trong môi trường tế bào.
Nhờ có các ATP, nguồn năng lượng phân giải này sẽ được cất trữ vào trong đó. Khi tế bào cần năng lượng, ATP sẽ được thủy phân làm gãy liên kết giữa Oxi với nguyên tử photphat cuối cùng. Kết quả quá trình này sẽ tạo ra một phân tử phosphat vô cơ (Pi), một ADP (Adenosin Diphosphat) và khoảng 7 kcal/mol năng lượng. Lúc này, ADP sẽ ngay lập tức được chuyển đổi trở lại thành ATP nhờ có enzyme ATP synthase nằm trong màng ti thể.
Broccophane là gì?
Broccophane chiết xuất từ mầm bông cải non giàu Sulforaphane (SFN) - chất chống oxy hóa. Nghiên cứu đã chỉ ra rằng Sulforaphane kích hoạt một số enzyme trong cơ thể mang lại nhiều lợi ích cho sức khỏe. Những enzyme này đóng vai trò quan trọng trong việc khử độc giúp cơ thể chống lại tình trạng stress oxy hóa.
Sulforaphane được ca ngợi là chất kích hoạt tự nhiên mạnh nhất của các enzyme khử độc giai đoạn II. Điều đó có nghĩa là nó giúp cơ thể chống độc, tự sửa chữa và phát triển. Hãy tưởng tượng Sulforaphane như lớp áo cho tế bào khỏi những tổn thương.

Điều chế sản xuất Broccophane
Chúng ta có thể tự làm bột mầm bông cải xanh tại nhà để sử dụng làm bột cháo ăn dặm cho trẻ em hoặc trong các món ăn khác như súp, cháo dinh dưỡng,...
Chuẩn bị nguyên liệu:
- Hạt mầm bông cải xanh;
- Bình hoặc hũ thủy tinh có nắp lưới.
Quy trình làm:
- Sử dụng hai muỗng canh hạt bông cải xanh vào bình đã chuẩn bị.
- Đổ nước vào khoảng nửa bình và đặt nắp lưới.
- Để bình ở nhiệt độ phòng trong 8 giờ hoặc qua đêm để hạt nảy mầm.
Sấy khô và nghiền bột:
- Sau khi hạt đã nảy mầm, sấy khô chúng bằng phương pháp sấy lạnh hoặc sấy thăng hoa.
- Nghiền hạt mầm đã sấy khô thành bột mịn.
Lưu trữ và sử dụng:
- Bột mầm bông cải xanh sấy lạnh có đặc điểm là khô, kết cấu đặc, dai dai.
- Bảo quản bột trong hũ kín, nơi khô ráo và thoáng mát.
- Sử dụng bột mầm bông cải xanh làm gia vị hoặc chất tạo màu trong các món ăn đặc biệt là các món xào, mì tôm và nhiều món khác.
Cơ chế hoạt động
Broccophane có tác dụng bảo vệ võng mạc nhờ tăng cường chuyển mã thông tin giữa các tế bào, làm chậm quá trình thoái hóa và cuối cùng là bảo vệ tế bào, đồng thời có tác dụng giảm viêm nhờ giảm interleukin (IL) -4 và IL-5,… và một số tiềm năng khác đang khám phá.

Sản phẩm liên quan








